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Introduction

The volatile nature of healthcare spending trends during the pandemic has brought
analysis of national healthcare spending and personal medical costs to the national spotlight.
Globally, the United States is regarded as being one of the largest healthcare markets, with over
17% of its GDP being spent on healthcare alone'. Over 2019-2021, healthcare spending in the
United States rose nearly 13.2% to $4.3 trillion. However, between 2020 and 2021 healthcare
spending rose only 2.7% which is substantially lower than the 10.3% increase from 2019-2020*°.
This deceleration in healthcare spending is attributed to a decline in government-related
expenditures offsetting increases in utilization of healthcare services that occurred due to pent-up
demand from the pandemic®*. Analysis of longer intervals of time shows that healthcare
spending has increased from $74.1 billion in 1970 to $1.4 trillion by 2000 and to the
aforementioned $4.3 trillion by 2021°. These national spending trends can be used to create a
generalized model of how personal medical costs have varied over time. However, there are
identifiable trends that separate the spending for certain demographics and populations living in
different geographical regions of the United States’.

Though broad generalizations of medical costs for the country as a whole are useful,
oftentimes the ability to predict personal medical costs for specific demographics and
geographical locations is more desirable. Such a model would primarily be for creating forecasts
of future medical costs for insurance companies and for analysis of historical trends, but the
model could also be used to aid patients in accurately estimating their medical costs throughout a
given year. Similar models are already used in the medical industry to predict health insurance
premiums®. To create this model, an appropriate data set that tracks medical bills and relevant

parameters such as age, body mass index (BMI), sex, geographic region, number of dependents



on insurance plans, and other healthcare-related parameters must be used. Therefore, to create
this model, a medical costs dataset that tracks patient age, sex, BMI, number of children, whether
or not they are a smoker, geographic region, and medical charges was used’. To create
predictions based on the dataset, various models, such as decision trees, K-nearest neighbor, and
multiple linear regression models can be used. These models will then be able to identify
relationships between the patient parameters in the data set and the medical charges associated

with each patient such that predictions of future medical costs for new patients can be created.
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knitr::opts_chunk$set(fig.height = 4,warning = FALSE)

library(ggplot2)
library(caret)

## Loading required package: lattice

library(tidyverse)

## — Attaching core tidyverse packages
tidyverse 2.0.0 —

## ¢ dplyr 1.1.4 v readr 2.1.4
## ¢ forcats 1.0.0 v stringr 1.5.1
## ¢ lubridate 1.9.3 v tibble 3.2.1
## ¢ purrr 1.0.2 v tidyr 1.3.0

## — Conflicts
tidyverse conflicts() —

##t ® dplyr::filter() masks stats::filter()

## 8 dplyr::lag() masks stats::lag()

#it ® purrr::1lift() masks caret::1lift()

## i Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all
conflicts to become errors

library(psych)

#Ht

## Attaching package: 'psych'’

#it

## The following objects are masked from 'package:ggplot2’:
it

#it %+%, alpha

library(Amelia)

## Loading required package: Rcpp

## #H#

## ## Amelia II: Multiple Imputation

#it ## (Version 1.8.1, built: 2022-11-18)

## ## Copyright (C) 2005-2023 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information

#it H#



Part 0: Importing Data

We will begin the exploratory data analysis by importing the dataset. The data set chosen is
named “Medical Cost Personal Datasets” and can be found on Kaggle.com. The data is imported
twice, once as a numeric data set labeled “data” and once again as a Factor data set labeled
“data.cat”. The children column is factored as it may seem numeric but is actually categorical in

nature.

## Numeric Dataset

data<-read.csv("insurance.csv",stringsAsFactors = TRUE,header=TRUE)
data$children <- factor(data$children)

##Factors Dataset

data.cat <-read.csv("insurance.csv",stringsAsFactors = FALSE,header=TRUE)
data.cat$children <- factor(data.cat$children)

Part 1: Data Description
The variables of the data analysis were: age, sex, body mass index (BMI), children,

smokers, region, and charges. The age variable represented the age of the primary beneficiary.

The sex was either M/F and represented the gender of the insurance contractor. The BMI variable

provides an overall understanding of the patient’s body. The objective body weight index (k—gz)
m

used the ratio of height to weight and ideally was between 18.5 and 24.9. The number of children
covered by health insurance and/or the number of dependents was represented in the children
variable. The smoker variable recorded patients actively smoking. The region was broken up into
northeast, southeast, southwest, and northwest and represented the residential area of the
beneficiary. Lastly, and likely the most important variable, the charges of the individual’s

medical costs billed by health insurance were represented by the charges variable.

1.2 Explore Data Set and Variables

To begin the analysis of the data, we need to have an understanding of what our data

looks like. Using the str(), summary(), and describe() functions, we can achieve this. The str()



function provides us with an overview of the data frame and the types of data in each column.
For example, we can see that the age column consists of integer values and the smoker column is
a factor with two levels that correspond to smoker/nonsmoker. The summary() function provides
a basic summary of statistical data associated with the data set. This includes mean, median, and
mode, as well as the count of non-numeric data. Finally, the describe() function provides a
similar statistical output but also includes variance and standard deviation. These outputs provide

us with a decent overview of the data we have imported and we can now proceed with analysis.

str(data)
## 'data.frame': 1338 obs. of 7 variables:
i age : int 19 18 28 33 32 31 46 37 37 60 ...

$
##t $ sex : Factor w/ 2 levels "female","male": 1 222211121...
## $ bmi : num 27.9 33.8 33 22.7 28.9 ...
## $ children: Factor w/ 6 levels "o","1","2","3",..: 1241112431
$
$
2
$

smoker : Factor w/ 2 levels "no","yes": 2111111111...
## region : Factor w/ 4 levels "northeast","northwest",..: 4 3 3 2 2 3 3
21 cen
## charges : num 16885 1726 4449 21984 3867 ...
summary(data)
#it age sex bmi children smoker
## Min. :18.00 female:662  Min. :15.96 0:574 no :1064
## 1st Qu.:27.00 male :676 1st Qu.:26.30 1:324 yes: 274
## Median :39.00 Median :30.40 2:240
## Mean :39.21 Mean :30.66 3:157
## 3rd Qu.:51.00 3rd Qu.:34.69 4: 25
## Max. :64.00 Max. :53.13 5: 18
#it region charges
## northeast:324 Min. : 1122
## northwest:325 1st Qu.: 4740
## southeast:364 Median : 9382
## southwest:325 Mean :13270
H## 3rd Qu.:16640
#HH# Max. 163770
describe(data)
## vars n mean sd median trimmed mad min
max

## age 1 1338 39.21 14.05 39.00 39.01 17.79 18.00



64.00

## sex* 2 1338 1.51 0.50 2.00 1.51 0.00 1.00
2.00

## bmi 3 1338 30.66 6.10 30.40 30.50 6.20 15.96
53.13

## children* 4 1338 2.09 1.21 2.00 1.94 1.48 1.00
6.00

## smoker* 5 1338 1.20 0.40 1.00 1.13 0.00 1.00
2.00

## region* 6 1338 2.52 1.10 3.00 2.52 1.48 1.00
4.00

## charges 7 1338 13270.42 12110.01 9382.03 11076.02 7440.81 1121.87
63770.43

H#it range skew kurtosis se

## age 46.00 0.06 -1.25 0.38

## sex* 1.00 -0.02 -2.00 0.01

## bmi 37.17 0.28 -0.06 0.17

## children* 5.00 0.94 0.19 0.03

## smoker* 1.00 1.46 0.14 @0.01

## region* 3.00 -0.04 -1.33 9.e3

## charges  62648.55 1.51 1.59 331.07

1.3 Data Manipulation

It appears that after the importation of our data, no variable needs to be adjusted or
changed from numeric to factor. It should be noted however that the “children” column was
changed to a factor when the data was imported. Although there are no variables that need to be
changed, we need to manipulate the data differently. If we wish to predict the price of medical
charges, we will experience more success and predictability if we split these prices into three
categories. The first of these categories, deemed low prices, will account for total charges below
$5,000. The second category, intermediate prices, will encompass charges between $5,001 and
$15,000. The last category, high prices, will account for values above $15,001. These price
values were chosen based on the quartile data of the charges column which will be observed
later (Fig. 15). By splitting the data like this, we have given ourselves the ability to make a more

predictable model.



breaks <- c(-Inf, 5000, 15000, Inf)

# Create a new column 'charge group' based on the breaks

#data$charge group <- cut(data$charge, breaks = breaks, labels = c("<
$5,000", "$5,001 - $15,000", "> $15,000"), include.lowest = TRUE)
data$charge_group <- cut(data$charge, breaks = breaks, labels = c("Low",
"Intermediate", "High"), include.lowest = TRUE)

data<- data.frame(data, stringsAsFactors = TRUE)

# View the resulting data frame

head(data)

##  age sex bmi children smoker region charges charge_group
## 1 19 female 27.900 0 yes southwest 16884.924 High
## 2 18 male 33.770 1 no southeast 1725.552 Low
## 3 28 male 33.000 3 no southeast 4449.462 Low
## 4 33 male 22.705 (%] no northwest 21984.471 High
## 5 32 male 28.880 0 no northwest 3866.855 Low
## 6 31 female 25.740 (%] no southeast 3756.622 Low
1.4 Missing Data

When performing an exploratory data analysis, it is of utmost importance to check for
missing data within the data set. Any missing values can be detrimental to the results of the study
and can hinder progress significantly. Below is the code conducted to sum up the missing values
in the data set as well as a missing data map to visualize the gaps in the data set (Fig. 1). Note

that our data set has no missing values and is therefore ready to be analyzed further.

sum(is.na(data))
## [1] ©

missmap(data)
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Figure 1. Missingness Map. Visualizes the missing data in the data set.

Part 2: Univariate Analysis
Now that we have preprocessed our data, we will now dive deeper into the individual
variables in the data set. Although this may not be necessary, it will allow us to notice any

uniqueness or possible trends among the variables.

2.1: Basic Structures

Here we utilize the summary() function once again for quick reference. We then begin to
analyze the age variable through the determination of its mean, minimum value, and maximum
values. This process is also completed for the other numeric variables: BMI and charges. Since

these statistical values cannot be determined for categorical variables like sex, smoker, children,



region, and the charge group, we will provide a count of each variable’s levels using the count()

function.

summary(data)

H#it age sex bmi children smoker
## Min. :18.00 female:662  Min. :15.96 0:574 no :1064
## 1st Qu.:27.00 male :676 1st Qu.:26.30 1:324 yes: 274
## Median :39.00 Median :30.40 2:240

## Mean :39.21 Mean :30.66 3:157

## 3rd Qu.:51.00 3rd Qu.:34.69 4: 25

## Max. :64.00 Max. :53.13 5: 18

#it region charges charge_group

## northeast:324 Min. ¢ 1122 Low :359

## northwest:325 1st Qu.: 4740 Intermediate:621

## southeast:364 Median : 9382 High :358

## southwest:325 Mean 113270

## 3rd Qu.:16640

Hit Max. 163770

## AGE

mean(data$age)

## [1] 39.20703

max(data$age)

## [1] 64

min(data$age)

## [1] 18

data.cat %>% count(data.cat$sex)

## data.cat$sex n
##H 1 female 662
##t 2 male 676

## BMI
max(data$bmi)

## [1] 53.13
min(data$bmi)
## [1] 15.96
mean(data$bmi)

## [1] 30.6634



## Children
data.cat %>% count(data.cat$children)

## data.cat$children n

#H# 1 0 574
## 2 1 324
#it 3 2 240
#H# 4 3 157
## 5 4 25
#t 6 5 18
## Smoker

data.cat %>% count(data.cat$smoker)

## data.cat$smoker n

## 1 no 1064
## 2 yes 274
## Region

data.cat %>% count(data.cat$region)

##  data.cat$region n

#H# 1 northeast 324
## 2 northwest 325
#it 3 southeast 364
#H# 4 southwest 325
## Charges
mean(data$charges)

## [1] 13270.42
max(data$charges)
## [1] 63770.43
min(data$charges)

## [1] 1121.874
2.2 Identify Qutliers

When analyzing data, it is important to identify any outliers. To do so, we utilized box
plots and histograms of the numeric data in the data set (Fig. 2-7). Outliers in the data are plotted
in red in each boxplot. Note that the charges variable has a large amount of outliers which further
justifies the splitting of the data into three price groups. By doing this outliers can be grouped

and predicted separately.



summary(data)

#it age sex bmi children smoker
## Min. :18.00 female:662  Min. :15.96 0:574 no :1064
## 1st Qu.:27.00 male :676 1st Qu.:26.30 1:324 yes: 274
## Median :39.00 Median :30.40  2:240
## Mean :39.21 Mean :30.66 3:157
## 3rd Qu.:51.00 3rd Qu.:34.69 4: 25
## Max. :64.00 Max. :53.13 5: 18
H#it region charges charge_group
## northeast:324 Min. ¢ 1122 Low :359
## northwest:325 1st Qu.: 4740 Intermediate:621
## southeast:364 Median : 9382 High :358
## southwest:325 Mean :13270
## 3rd Qu.:16640
#H# Max. 163770
p<- ggplot(data,aes(age))
p+ geom_boxplot(outlier.colour = "red")
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Figure 2. Boxplot of age. Visualizes the age data in a box plot.
p+ geom_histogram()

## “stat_bin()” using “bins = 30 . Pick better value with “binwidth’.
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Figure 3. Age Histogram. Histogram of age data.

p<- ggplot(data,aes(bmi))
p+ geom_boxplot(outlier.colour

- "I"ed")
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Figure 4. Boxplot of BMI. A boxplot of the BMI data.
p+ geom_histogram()

## “stat_bin()" using “bins = 30 . Pick better value with “binwidth’.
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Figure 5.Histogram of BMI. Histogram of the BMI data.

p<- ggplot(data,aes(charges))

p+ geom_boxplot(outlier.colour = "red")
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Figure 6. Charges Boxplot. A boxplot of the BMI data.
p+ geom_histogram()

## “stat_bin()" using “bins = 30 . Pick better value with “binwidth’.
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Figure 7. Histogram of Charges. Histogram of the charges data.
2.3: Frequency Distributions

To further investigate the data, let us assess the frequency distributions of the data. Using
the pairs() function, we can visualize a matrix of scatterplots of each variable (Fig. 8).
Furthermore, by utilizing the var() and sd() functions of the numerical data, we can obtain the
variance and standard deviations of the data respectively. Then using the ggplot library, a
histogram and density plot of each numeric variable can be created (Fig. 9-15). The density plot
of the children variable is particularly interesting as it visualizes the data depending on the
number of dependencies (children) (Fig. 13). The density graph of the charges variable is also
interesting as it reveals that most of the data is below the $15,000 mark (Fig. 15). This chart

helped determine how to split the three categories of price into meaningful groups.

pairs(data)
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Figure 8. Matrix of Scatterplots. Scatterplots of each variable of the dataset.

#AGE

var(data$age)
## [1] 197.4014
sd(data$age)

## [1] 14.04996

p<- ggplot(data,aes(age))
p+ geom_histogram()

## ~stat_bin()" using “bins = 30 . Pick better value with “binwidth".
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Figure 9. Histogram of Age data. Quantifies the different ages in the dataset.
p+ geom_density()
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Figure 10. Density of Age. Shows the density of the age variable.

#BMI
var(data$bmi)

## [1] 37.18788
sd(data$bmi)
## [1] 6.098187

p<- ggplot(data,aes(bmi))
p+ geom_histogram()

## “stat_bin()  using “bins = 30" . Pick better value with “binwidth’.
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Figure 11. Histogram of BMI. Shows the histogram of the age variable.
p+ geom_density()
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Figure 12. Density of BMI. The BMI is normally distributed around a BMI of 30.

#children

p<- ggplot(data,aes(children))
p+ geom_density()
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Figure 13. The density of the number of children. Most patients had zero dependencies.

#CHARGES
var(data$charges)

## [1] 146652372
sd(data$charges)
## [1] 12110.01

p<- ggplot(data,aes(charges))
p+ geom_histogram()

## ~stat_bin()" using “bins = 30 . Pick better value with “binwidth".
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Figure 14. Quantification of insurance charges. Most charges fell below $15,000.

p+ geom_density()
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Figure 15. Density of Charges. Density chart of charges data.

summary(data$charges)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
#it 1122 4740 9382 13270 16640 63770

data %>% count(data$charge group)

##  data$charge _group n

## 1 Low 359
#it 2 Intermediate 621
## 3 High 358

Normalization of Data

Later in our analysis, we will require normalized data as we will be conducting a
K-nearest neighbor model. There are several ways to normalize data, one of which is a min-max
normalization, which was chosen for this project. This method takes all numeric data and places

it within 0 and 1. This normalization method doesn’t affect the integrity of the data and therefore



our future models. Note that the children column needs to be refactored after the normalization

of the data.

## using min-max normalization
library(dplyr)

min_max_normalize <- function(x) {
(x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))

}

normalized data <- data %>%
mutate(across(where(is.numeric), min_max_normalize))

## refactor children column
normalized data$children<- factor(normalized_data$children)

data_encoded <- model.matrix(~ . - 1, data = normalized_data)
## Prove it works
str(normalized data)

## 'data.frame': 1338 obs. of 8 variables:

## $ age : num ©.0217 © 0.2174 0.3261 0.3043 ...

## $ sex : Factor w/ 2 levels "female","male": 1222211121
## $ bmi : num ©.321 0.479 0.458 0.181 0.348 ...

## $ children : Factor w/ 6 levels "o","1","2","3",..: 124111243
il coc

## $ smoker : Factor w/ 2 levels "no","yes": 2111111111...
## $ region : Factor w/ 4 levels "northeast","northwest",..: 4 3 3 2 2
33212...

## $ charges : nhum 0.25161 0.00964 0.05312 0.33301 0.04382 ...

## $ charge_group: Factor w/ 3 levels "Low","Intermediate",..: 3113112
223 ...

Part 3: Multivariate Analysis

Now that we have investigated the individual variables in the data set, let us now assess
potential relationships between these variables. The following code analyzes the relationship
between age versus charges and BMI versus charges. Analysis was also performed between age
versus charge group and BMI versus charge group to observe how this would aid our results.
Data points were plotted using ggplot and the /m() and corr() functions were used to create a

linear regression model and assess the correlation between the respective variables. The linear



model of the age versus charges showed an R? value of about 8%, whereas the age versus
charge group outputted a value of 45%. The linear model of the BMI versus charges showed an
R? value of about 3%, whereas the BMI versus charge group outputted a value of 6%. Although
these values are quite low and would not prove effective models of medical bill price, it is
important to note that the relationships with the charge group performed better than those with
the charges group. It is important to note that linear regression models and correlation cannot be

determined on non-numeric variables.

p<- ggplot(data,aes(age,charges))
p+ geom_point()
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Figure 15. Linear regression of the charges versus age. As age increases, charge increases.

age.lm<- 1lm(age~charges, data=data)
summary(age.1lm)



##

## Call:

## 1m(formula = age ~ charges, data = data)

#H

## Residuals:

H## Min 1Q Median 3Q Max

## -30.0609 -11.4222 0.1691 11.1759 24.6013

Hit

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) 3.460e+01 5.441e-01 63.60 <2e-16 ***
## charges 3.469e-04 3.029e-05 11.45 <2e-16 ***
H# ---

## Signif. codes: © '***' 9,001 '**' @9.01 '*' ©0.05 '.' 0.1 ' ' 1
#it

## Residual standard error: 13.41 on 1336 degrees of freedom
## Multiple R-squared: ©0.08941, Adjusted R-squared: ©0.08872
## F-statistic: 131.2 on 1 and 1336 DF, p-value: < 2.2e-16

cor(x=data$age,y=data$charges)
## [1] ©.2990082

p<- ggplot(data,aes(age,charge_group))
p+ geom_point()
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Figure 16. Charge groups versus age. The costs of charges are grouped into 3 separate
groups to simplify data analysis.

age.lm<- 1lm(age~charge_group, data=data)
summary(age.1lm)

H#H

## Call:

## 1m(formula = age ~ charge_group, data = data)

H#H

## Residuals:

H## Min 1Q Median 3Q Max

## -29.262 -6.287 -0.229 7.486 23.805

#it

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) 24.2869 0.5469 44.41 <2e-16 ***
## charge_groupIntermediate 22.9756 0.6871 33.44  <2e-16 ***
## charge_groupHigh 15.9086 0.7740  20.55 <2e-16 ***
H# ---

## Signif. codes: @ '***' 9,001 '**' @9.01 '*' 0.05 '.' 0.1 ' ' 1

H#H

## Residual standard error: 10.36 on 1335 degrees of freedom

## Multiple R-squared: ©0.4568, Adjusted R-squared: 0.456

## F-statistic: 561.4 on 2 and 1335 DF, p-value: < 2.2e-16

cor(x=data$age,y=data$charges)
## [1] ©.2990082

p<- ggplot(data,aes(bmi,charges))
p+ geom_point()
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Figure 17. Charges versus BMI. Some positive correlation is suggested by the graph.

bmi.1lm<- 1Im(bmi~charges, data=data)
summary(bmi.1lm)

##

## Call:

## Im(formula = bmi ~ charges, data = data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.8424 -4.1030 -0.2401 3.8467 23.6758

#Ht

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) 2.934e+01 2.426e-01 120.956 < 2e-16 ***
## charges 9.988e-05 1.350e-05 7.397 2.46e-13 ***
## ---

## Signif. codes: @ '***' 9,001 '**' @9.01 '*' ©0.05 '.' 0.1 ' ' 1
H#H

## Residual standard error: 5.979 on 1336 degrees of freedom
## Multiple R-squared: ©0.03934, Adjusted R-squared: ©.03862
## F-statistic: 54.71 on 1 and 1336 DF, p-value: 2.459e-13

cor(x=data$bmi,y=data$charges)



## [1] 0.198341

p<- ggplot(data,aes(bmi,charge_group))
p+ geom_point()
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Figure 18. Charge groups versus BMI. This allows analyses to be simplified.

bmi.1lm<- 1m(bmi~charge_group, data=data)
summary(bmi.1lm)

#H

## Call:

## 1m(formula = bmi ~ charge_group, data = data)

H#H

## Residuals:

H## Min 1Q Median 3Q Max

## -14.0284 -4.3207 -0.2548 4.0276 23.2446

#it

## Coefficients:

#Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) 29.8854 0.3211 93.082 < 2e-16 ***
## charge_groupIntermediate ©.9579 0.4033 2.375 0.01769 *
## charge_groupHigh 1.2459 0.4544  2.742 0.00619 **
H# ---

## Signif. codes: @ '***' 9,001 '**' @9.01 '*' ©0.05 '.' 0.1 ' ' 1



#H

## Residual standard error: 6.083 on 1335 degrees of freedom

## Multiple R-squared: ©0.006351, Adjusted R-squared: 0.004862
## F-statistic: 4.266 on 2 and 1335 DF, p-value: 0.01423

cor(x=data$bmi,y=data$charges)
## [1] 0.198341
data %>% count(data$children)

it data$children n

## 1 0 574
## 2 1 324
##t 3 2 240
## 4 3 157
## 5 4 25
##t 6 5 18

p<- ggplot(data,aes(children,charges))
p+ geom_point()
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Figure 19. Charges versus number of children. Patients with greater numbers of children
tended to have lesser charges.



p<- ggplot(data,aes(region,charges))
p+ geom_point()
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Figure 20. Charges versus region. Not much correlation is seen.

Part 4: Predictive Modeling

4.1: Split your data

To create more reliable predictive models, three advanced models will be created. These
models include a multiple linear regression, a decision tree, and a K-nearest neighbor model.
Prior to creating these models, we first need to split our normalized data into training and test

data respectively. We will split the data into 70% training data and 30% testing data.

# Set Seed

set.seed(100)

#Seperate data
spt<-sample(l:nrow(data),size=nrow(data)*@.7,replace=FALSE)
#set Train data



train.data<-normalized_data[spt, ]
#set test data
test.data<-normalized data[-spt, ]

4.2: Build your model

Model 1 - Multiple Linear Regression

A multiple linear regression of all parameters was performed to potentially describe the
relationship between a patient's medical bill and the parameters of the data set. Note that linear
regression-based models are incapable of predicting categorical data so to predict data into one
of these three categories, we must explore other model options.

## Multiple Linear regression of all parameters
mregl<-

Im(datag$charges~data$age+datatbmi+data$sex+data$children+data$region+data$smo
ker, data = data)

summary(mregl)

#Ht

## Call:

## lm(formula = datag$charges ~ data$age + data$bmi + data$sex +
it data$children + data$region + datag$smoker, data = data)

#i#t

## Residuals:

# Min 1Q Median 3Q Max

## -11689.4 -2902.6 -943.7 1492.2 30042.7

#it

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) -11927.17 993.66 -12.003 < 2e-16 ***
## data$age 257.19 11.91 21.587 < 2e-16 ***
## data$bmi 336.91 28.61 11.775 < 2e-16 ***
## data$sexmale -128.16 332.83 -0.385 0.700254

## data$childreni 390.98 421.35 ©.928 0.353619

## data$children2 1635.78 466.67 3.505 0.000471 ***
## data$children3 964.34 548.10 1.759 0.078735 .
## data$childrend 2947 .37 1239.16  2.379 0.017524 *
## data$children5 1116.04 1456.02 0.767 0.443514

## data$regionnorthwest -380.04 476.56 -0.797 0.425318

## data$regionsoutheast -1033.14 479.14 -2.156 0.031245 *
## data$regionsouthwest -952.89 478.15 -1.993 0.046483 *
## data$smokeryes 23836.41 414.14 57.557 < 2e-16 ***

.



## Signif. codes: © '***' 9,001 '**' @9.01 '*' ©.05 '.' 0.1 ' ' 1
##

## Residual standard error: 6059 on 1325 degrees of freedom

## Multiple R-squared: ©0.7519, Adjusted R-squared: ©0.7497

## F-statistic: 334.7 on 12 and 1325 DF, p-value: < 2.2e-16

Model 2 - K-Nearest Neighbor

Our second model will be a K-nearest neighbor. To begin we must choose a starting
number of K to be our centers. We will obtain this starting value by taking the square root of the
number of rows in the training data which we will round up to 31. Then we create training and
test classes of the value we wish to predict which is the charge group. The K-nearest neighbor

function is then used to set up the model using the training, test, and class data with a k value of

31.

## how many centers?
sqrt(nrow(train.data))

## [1] 30.59412

library(class)

#set Train data
train.data_class<-train.data$charge_group
#set test data
test.data_class<-test.data$charge group

train.data <- as.data.frame(lapply(train.data, as.numeric))
test.data <- as.data.frame(lapply(test.data, as.numeric))

suppressWarnings(knn.31<-knn(train=train.data,test=test.data,cl=train.data cl
ass,k=31))

Model 3 - Decision Tree

Our final model is a decision tree. To have an accurate reading in the decision tree, we
must remove the charges column of the data as it is deterministic of which charge group a data
point will be assigned to. After removing the column, a decision tree with an initial cp of 0 was

then created using the rpart library (Fig. 21). This tree is too convoluted so we will find the



optimal cp value of 0.056 (Fig. 22). We will then recreate the tree using the optimal cp value

(Fig. 23).

library(rpart)

library(rpart.plot)

# Remove charges column since it determinates the outcome

train.data_tree<- train.data

train.data_tree$charges<-NULL

# using all the predictors and setting cp = 0

tree <- rpart(charge_group ~ ., data = train.data_tree, method = "class", cp
= 0.00)

rpart.plot(tree)
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Figure 21. Decision Tree. Decision tree with a cp value of 0.

plotcp(tree, 1ty = 3, col = 2, upper = "splits" )
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Figure 22. Optimal CP. Shows the relative error with respect to different cp values.

tree <- rpart(charge_group ~ ., data = train.data_tree, method = "class", cp
= 0.056)
rpart.plot(tree)
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Figure 23. Final Decision Tree. A decision tree with a cp value of 0.056.

4.3 Model Evaluation

Now that our three models have been created, let's test their predictive success.

Multiple Linear Regression Evaluation

The summary() function and some visuals have been provided to assess the success of this
model. Since the R? value was 75%, there seems to be a decent relationship between these
parameters and the price of a medical bill. Although this value is decent, it would be difficult to
use for predictive purposes as it relates the parameters to a numeric value of medical bills and

not the three charge categories we created earlier for predictive purposes.

summary(mregl)

##
## Call:



##
##
##
##
H##
##
##t
##
##
##
H##
##
##
##
##
##t
H##
##
##
H##
##
##
##
##
##
H##
##
##

Im(formula = data$charges ~ datag$age + data$bmi + data$sex +

data$children + data$region + datag$smoker, data = data)

Residuals:
Min 1Q
-11689.4 -2902.6

Coefficients:

(Intercept)

datag$age

data$bmi
data$sexmale
data$childreni
data$children2
data$children3
data$childrend
data$children5
data$regionnorthwest
data$regionsoutheast
data$regionsouthwest
data$smokeryes

Signif. codes: © '*

Median
-943.7

Estimate Std.
-11927.
257.
336.
-128.
390.
.78
964.
2947.
1116.
-380.
-1033.
-952,
23836.

1635

3Q

Max

1492.2 30042.7

17
19
91
16
98

34
37
04
04
14
89
41

**' 9.001

993

0.01

.66
11.
28.

332.
421.
466.
548.
1239.
1456.
476.
479.
478.
414.

91
61
83
35
67
10
16
02
56
14
15
14

[V

Q.

Error t value
-12
21.
11.
-0.

.003
587
775
385
.928
.505
.759
.379
.767
.797
.156
.993
.557

05

Pr(>|t])
< 2e-16
< 2e-16
< 2e-16
.700254
.353619
.000471
.078735
.017524
.443514
.425318
.031245
.046483
< 2e-16

OO0

P el

Residual standard error: 6059 on 1325 degrees of freedom
0.7519, Adjusted R-squared:
F-statistic: 334.7 on 12 and 1325 DF,

Multiple R-squared:

0.7497

p-value: < 2.2e-16

plot(mregl$fitted.values, sqrt(abs(mregl$residuals)),

main = "Residuals vs. Fitted Values",

xlab
ylab

"Fitted Val

ues",

"SQRT of Residuals")

% % %
%k %k
%k %k *x

%k %k *x



Residuals vs. Fitted Values
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Figure 24. The square root of residuals versus fitted values. Two main populations can be
seen.

# Residuals vs. Each Predictor Variable
par(mfrow = c(2, 2)) # Create a 2x2 grid for multiple plots
plot(mregl, which = 1:4)
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Figure 25. Multiple plots to assess types of multivariate analyses. Residuals versus fitted
values; Q-Q residuals; Scale-Location; and CooK’s distance.

Decision Tree Evaluation

Below is a confusion matrix of the decision tree created earlier. The classification error based on
the confusion matrix was then calculated to be almost 4%. This means that the decision tree

model was successful in predicting the correct charge group 96% of the time.

tree.predict <- predict(tree, test.data, type = "class")

## confusion matrix

conf.matrix <- table(test.data$charge group, tree.predict)

rownames (conf.matrix) <- paste("Actual", rownames(conf.matrix), sep = ":")
colnames(conf.matrix) <- paste("Predicted", colnames(conf.matrix), sep = ":")
print(conf.matrix)

H#it tree.predict

i Predicted:1 Predicted:2 Predicted:3
i Actual:1 100 9 0
## Actual:2 7 175 1

##  Actual:3 8 16 86



# caclulating the classification error

classification_error<- (conf.matrix[1, 2] + conf.matrix[2, 1]) /
sum(conf.matrix)

print(classification_error)

## [1] 0.039801

KNN Evaluation

Finally, to assess the predictability of the KNN model, the following code was written.
The model was found to successfully predict the groupings 97% of the time. Although this is
very good, we can do better by optimizing K. A graph of accuracy vs. K values was created and
the optimal K value of 3 was chosen which makes sense as there are three categories to choose

from (Fig. 26). A new KNN model was created using a K of 3 and produced a 99.5% accuracy.

acc31<- 100*sum(test.data class==knn.31)/nrow(test.data)
acc3l

## [1] 97.26368

i<- 1

k.optm<-1

for(i in 1:50){

knn.mod <- knn(train=train.data,test=test.data,cl=train.data_class, k=i)
k.optm[i] <- 100 * sum(test.data class==knn.mod)/nrow(test.data)

k<-1

cat(k, '=",k.optm[i]," ")

}

## 1 = 99.50249 2 = 99.25373 3 = 99.50249 4 = 99.25373 5 = 99.00498 6 =
99.00498 7 = 98.75622 8 = 98.75622 9 = 98.00995 10 = 98.25871 11 =
98.00995 12 = 98.00995 13 = 97.76119 14 = 97.76119 15 = 97.51244 16
97.76119 17 = 98.00995 18 = 98.00995 19 = 98.00995 20 = 97.76119 21 =
97.51244 22 = 97.51244 23 = 97.51244 24 = 97.76119 25 = 97.51244 26
97.51244 27 = 97.01493 28 = 97.01493 29 = 97.01493 30 = 97.01493 31 =
97.26368 32 = 97.26368 33 = 97.01493 34 = 96.51741 35 = 96.51741 36
96.51741 37 = 96.26866 38 = 97.01493 39 = 97.01493 40 = 96.76617 41 =
97.01493 42 = 96.51741 43 = 96.51741 44 = 96.51741 45 = 96.0199 46 =
96.26866 47 = 95.77114 48 = 95.77114 49 = 95.52239 50 = 95.02488

#View accuracy plot

ggplot(data=data.frame(k.optm))+
geom_line(mapping=aes(y=k.optm,x=1:1length(k.optm))) + labs(x="K-Value",
y="Accuracy level %")
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Figure 26. K-Values vs. Accuracy. Visualization of accuracy levels as K value increases.

suppressWarnings(knn.31<-knn(train=train.data,test=test.data,cl=train.data_cl
ass,k=3))

acc31<- 100*sum(test.data_class==knn.31)/nrow(test.data)

acc31

## [1] 99.50249

Part5s

5.1 Principal Results/Findings

The goal of this EDA was to attempt to create predictive models of medical bill charges
using the following parameters: age, sex, BMI, smoker, number of children dependencies, and
geographic region. Three models including a multiple linear regression, a decision tree, and a
K-nearest neighbor were created. The K-nearest neighbor model showed the most success with
the ability to assign data to the proper charge group 99.5% of the time. In a close second, the

decision tree model had a predictive success of 96%. Finally, the multiple linear regression had



the lowest success rate with a 75% correlation of data. It is also noteworthy that the multiple

linear regression cannot predict the charge group and is therefore not an ideal model.

5.2 Limitations

One of the largest limitations of this dataset would be that the variables did not embody
all of the factors that could contribute to the total medical cost for each patient. This could cause
false conclusions to be made about the weight of importance for certain variables that may have
in reality been attributed to a different cause. Additionally, the data set contained a limited
number of data points, which could be improved upon with an increased sample population. The
three price ranges also contain a large variability and lack of consistency in the groups. The first
group ranges from $0-$5000, the second group ranges from $5,001-$15,000, and the third group
is any value above $15,001. The inconsistency between these groups could skew the data and
decrease the statistical significance of the findings. As with any machine learning model, the
predictive success of the model is only as good as the data it is fed. To improve success we
would need to feed the models more data and continue testing with data the model has yet to
receive. Still, even with more data, these models can only be so predictive, and looking into

different model options may also be beneficial.

5.3 Conclusion

The goal of this analysis was to explore the “Medical Cost Personal Datasets” dataset
from Kaggle.com and develop predictive models from the given data. Specifically, a model of
the price of the medical bill was desired. Since the results of attempting to model the exact
charge of a medical bill would be dismal, predictive models were made the determine if a
medical charge would be in a low group (<$5,000), intermediate group ($5,001-$15,000), or a

high group (>$15,001). Most data points fell within the low group. It was found that a K-nearest



neighbor model was the most successful in predicting these charge groups with a success rate of
99.5% compared to the success rates of the decision tree and multiple linear regression models,
which had success rates of 96% and 75%, respectively. Due to the multivariate nature of this data
set, inferences of the charge groups that single data types belong to could not be inferred. Further
exploration of this data set might involve other model types as well as a larger dataset for more

accurate models.
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